

Job No: 13188/4 Our Ref: 13188/4-AA 3 August 2015

ABN 64 002 841 063

Nix Anderson Pty Ltd 17 Chuter Street MCMAHONS POINT NSW 2060 Email: <u>robert.mcguinness@nxa.com.au</u>

Attention: Mr R McGuinness

Dear Sir

re: Proposed Redevelopment 160 Burwood Road, Concord Additional Contamination Assessment

Further to the contamination assessment report (Report 13188/1-AA dated 12 September 2014); this letter report presents the results of an additional contamination assessment (ACA) at locations (BH11 to BH16) as indicated on the Drawing No 13188/3-AA1. Field sampling was carried out in conjunction with additional geotechnical investigation. The additional geotechnical investigation report is being submitted separately.

The investigation was commissioned by Mr R Ewing of Propertylink Holdings Pty Ltd through a subcontract agreement and was carried out in general accordance with Geotechnique Pty Ltd proposal Q6614-AC dated 12 June 2015.

Proposed Development

We understand that Nix Anderson has been retained by Propertylink to assist in carrying out feasibility review of the above site to assess the development potential on behalf of the site owners – Freshfood Australia Holdings Pty Ltd. It is also understood that the existing Robert Timms Factory (Bushell's) will be relocated prior to development and the site will be developed as an Urban Regeneration Project – an integrated Residential Community.

As requested, assessment of soils in the area between the pathway and the seawall was conducted with recovery and analysis of soil samples from additional boreholes (BH11 to BH16) as nominated by the client.

The objective of the assessment was to ascertain whether the soils being assessed are likely to present a risk of harm to human health and the environment under the conditions for the proposed residential development.

SCOPE OF WORK

In order to achieve the objective of this report, the following scope of work was carried out:

- Site inspection.
- Additional soil sampling by a Geotechnical/Environmental Engineer from Geotechnique in conjunction with geotechnical investigation.

- Chemical analysis by laboratories accredited by the National Association of Testing Authorities (NATA), in accordance with Chains of Custody (COC) prepared by Geotechnique.
- Assessment of field and laboratory Quality Assurance (QA) and Quality Control (QC).
- Assessment of the laboratory analytical results.
- Assessment of soil at the sampled borehole locations.

Regional Geology and Landscape

Reference to the Geological Map of Sydney (Herbert 1983) indicates that the bedrock at the site is likely to be Hawkesbury Sandstone, comprising medium grained quartz sandstone.

Reference to the Soil Landscape Map of Sydney (Chapman et al., 2004) indicates that the landscape at the site belongs to the Gymea Group, which is characterised by undulating to rolling rises and low hills on Hawkesbury Sandstone. However, the site is likely to have been filled in the past to raise levels for development.

FIELD SAMPLING AND LABORATORY TESTING

An Environmental Engineer from Geotechnique was responsible for sampling and logging the sub-surface profile encountered during the field work on 9, 10 and 13 July 2015.

Reference should be made to the engineering borehole logs in Attachment A for detailed descriptions of the soil profile encountered during the field work. Generally, the samples did not have obvious asbestos sheets/pieces, odour, staining or discolouration that would indicate the potential for contamination.

The sampled borehole locations are indicated on the attached Drawing No 13188/3-AA1.

To prevent the potential loss of any volatile compounds, the recovered soil sample for laboratory analysis was immediately transferred into a labelled, laboratory supplied, 250ml glass jar and sealed with an airtight, Teflon screw top lid. The fully filled jar was then placed in a chilled container.

Samples were recovered using one-off nitrile gloves in order to avoid cross contamination between the sampling locations.

In order to ensure the analytical performance of the primary laboratory, duplicate and split samples were prepared and kept in labelled, laboratory supplied, glass jars (acid-washed and solvent-rinsed) sealed with airtight, Teflon screw top lids. The fully filled jars were placed in a chilled container.

The recovered fill sample for asbestos analysis was transferred into a small labelled, plastic bags. The small plastic bags were placed inside a large plastic bag.

At completion of field sampling the chilled container was transported to our Penrith office. All the jars and bottle were then transferred to a refrigerator where the temperature was maintained below 4°C.

The chilled container with recovered samples was forwarded under Chain of Custody (COC) conditions to the primary laboratory SGS Environmental Services (SGS) and the secondary laboratory, Envirolab Services Pty Ltd (Envirolab), both NATA accredited.

On receipt of the samples the laboratories returned the Sample Receipt Advice verifying the integrity of all samples received.

3

13188/4-AA 160 Burwood Road, Concord

Within the holding times detailed in Schedule B(3) of The National Environment Protection (Assessment of Site Contamination) Measure (NEPM) 1999 (April 2013) by the National Environment Protection Council (NEPC), the recovered soil samples were analysed for the following potential contaminants of concern:

- Metals, including, arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), mercury (Hg), nickel (Ni) and zinc (Zn).
- Total Recoverable Hydrocarbons (TRH).
- Benzene, Toluene, Ethyl Benzene and Xylenes (BTEX).
- Organochlorine Pesticides (OCP).
- Polycyclic Aromatic Hydrocarbons (PAH).
- Polychlorinated Biphenyls (PCB).
- Cyanides.
- Phenols.
- Asbestos.

FIELD QUALITY ASSURANCE & QUALITY CONTROL (QA & QC)

The following QA/QC procedures were implemented for the sampling and analytical program.

Trip Spike Sample

Trip spike samples are obtained from the laboratory on a regular basis, prior to conducting field sampling where volatile substances are suspected. The samples are held at Geotechnique in the Penrith office, at less than 4 degrees Celsius, for a period of not more than seven days. During the fieldwork, the trip spike samples are kept in the chilled container with soil samples recovered from the site. The trip spike sample is then forwarded to the primary laboratory together with the soil samples recovered from the site.

The trip spike is prepared by the laboratory by adding a known amount of a pure petrol standard to a clean sand sample. The sample is mixed thoroughly to ensure a relatively homogenous distribution of the spike throughout the sample. When the sample is submitted for analysis, the same procedure is adopted for testing as the soil samples being analysed from the site.

The purpose of the trip spike is to detect any loss or potential loss of volatiles from the soil samples, during field work, transportation, sample extraction or testing.

A trip spike sample (TS1) was forwarded to the primary analytical laboratory with the samples collected from the site and tested for BTEX. The test results for the trip spike sample, reported as a percentage recovery of the applied and known spike concentrations, are shown in Table A.

As indicated in Table A, the results show a generally good recovery (ranging from 99% to 107%) of the spike concentrations.

Based on the above, it is considered that any loss of volatiles from the recovered samples that might have occurred would not affect the outcome / conclusions of this report.

Duplicate Sample

In order to ensure reliable analytical results from the laboratory, one duplicate soil sample was prepared from an original sample and submitted blind to the primary laboratory (SGS Environmental Services) for analysis. The test results for the duplicate sample were compared with the test results of the corresponding original sample and are summarised in the attached Table B. The duplicate frequency adopted complies with the NEPM, which recommends a duplicate frequency of at least 5% (achieved with 1 duplicate sample analysed from 20 samples analysed, i.e. 5%).

A comparison was made and the Relative Percentage Differences (RPD) was computed to assess the difference between the original and duplicate. RPD within 30% are generally considered acceptable. As indicated in Table B, the comparisons between the duplicate and corresponding original sample indicated generally acceptable RPD with the exceptions of higher RPDs for Chromium, lead, nickel and zinc, which were considered due to the heterogeneity of the samples recovered. The concentration of arsenic, copper, lead and nickel of the pairs of samples analysed were also well below the assessment criteria adopted, therefore, the variations are not considered significant and the test results provided by the primary laboratory are deemed reliable for this assessment.

Split Sample

Split samples provide a check on the analytical performance of the primary laboratory. One split sample was submitted for analysis to a secondary laboratory (Envirolab Services Pty Ltd). The split sample frequency adopted complies with the NEPM, which recommends a frequency of 5% (achieved with 1 split sample analysed from 20 samples analysed, i.e. 5%).

Based on Schedule B (3) of the NEPM, the difference in the results between the split samples should in general be within 30% of the mean concentration determined by both laboratories, i.e., RPD should be within 30%. However, this variation can be higher for organic analysis than for inorganics and for low concentrations of analytes. The test results are summarised in the attached Table C.

As indicated in Table C, the comparisons between the split and corresponding original samples indicated generally acceptable RPD with the exception for arsenic, copper, lead and nickel. Higher RPDs calculated for arsenic, copper, lead and nickel were considered due to heterogeneity of the samples analysed. The concentrations of arsenic, copper, lead and nickel for the pairs of samples analysed were also well below the assessment criteria adopted, therefore the variations are not considered significant and the test results provided by the primary laboratory are deemed reliable for this assessment.

LABORATORY QA & QC

Geotechnique uses only NATA accredited laboratories for chemical analyses. The laboratory must also incorporate quality laboratory management systems to ensure trained analysts using validated methods and suitably calibrated equipment in order to produce reliable results.

In addition to the quality control samples, the laboratory must also ensure that all analysts receive certification as to their competence in carrying out the analysis and participate in national and international proficiency studies. SGS and Envirolab are both accredited by NATA. The two laboratories also operate Quality Systems that are designed to comply with ISO/IEC 17025.

All reported laboratory limits of reporting (LOR) / practical quantitation limits (PQL) were less than the assessment criteria.

As part of the analytical run for the project, the laboratories included laboratory blanks, duplicate samples, laboratory control samples, matrix spikes and surrogate spikes.

We have checked the QA/QC procedures and results adopted by the laboratories against the appropriate guidelines. The quality control sample numbers adopted by SGS and Envirolab are considered adequate for the analyses undertaken and generally conform to recommendations provided in the National Environment Protection Measure (NEPM) 1999 (April 2013) "*Guideline on Laboratory Analysis of Potentially Contaminated Soils*".

Overall, the quality control elements adopted by SGS and Envirolab indicate the analytical data to fall within acceptable levels of accuracy and precision for the analysis of soils. The analytical data provided, is therefore considered to be reliable and useable for this assessment.

ASSESSMENT CRITERIA

Investigation levels and screening levels developed in the NEPM 2013 were used in this assessment, as follows:

• Risk-based Health Investigation Levels (HIL) for a broad range of metals and organic substances. The HIL are applicable for assessing human health risk via all relevant pathways of exposure. The HIL as listed in Table 1A (1) of Schedule B1 "*Guideline on Investigation Levels for Soil and Groundwater*" are provided for different land uses.

The site is located within a parcel of industrial land, which will be developed into high density residential community. As such, with regard to human health, analytical results will be assessed against risk based HIL for *residential with minimal opportunities for soil access; including dwellings with fully and permanently paved yard space such as high-rise buildings and apartments* (HIL B).

 Health Screening Levels (HSL) for selected petroleum compounds, fractions and Naphthalene are applicable for assessing human health risk via inhalation and direct contact pathways. The HSL depend on specific soil physicochemical properties, land use scenarios and the characteristics of building structures. The HSL listed in Table 1A(3) of Schedule B1 "*Guideline on Investigation Levels for Soil and Groundwater*" apply to different soil types and depths below surface to >4 m.

For this assessment, the analytical result was assessed against the available HSL for *with minimal* opportunities for soil access; including dwellings with fully and permanently paved yard space such as *high-rise buildings and apartments* (HSL B) for clay to depth of 0m to <1m and for sand to depth of 0m to <1m.

• Ecological Screening Levels (ESL) for selected petroleum hydrocarbon compounds, TPH fractions and Benzo(a)Pyrene are applicable for assessing the risk to terrestrial ecosystems. ESL listed in Table 1B(6) of Schedule B1 "*Guideline on Investigation Levels for Soil and Groundwater*" broadly apply to coarse and fine-grained soils and various land uses and are generally applicable to the top 2m of soil.

The analytical results were assessed against the available ESL for *urban residential* for coarse and fine-grained soils.

Ecological Investigation Levels (EIL), a specific type of Soil Quality Guidelines (SQG) for selected metals are applicable for assessing the risk to terrestrial ecosystems. EIL listed in Table 1B(1-5) of Schedule B1 "Guideline on Investigation Levels for Soil and Groundwater" depend on specific soil physicochemical properties and land use scenarios and generally apply to the top 2m of soil. The EIL are calculated using 30% effect concentration (EC30) or lowest observed effect concentrations (LOEC) toxicity data. For arsenic and lead generic EIL for urban residential land use for aged contamination are adopted. For other metals, where available, EIL are calculated directly by using EIL calculator developed by CSIRO for NEPC.

For this assessment the analytical results were assessed against the available SQG / EIL for *urban residential* land use for aged contamination in soil for low traffic volume.

 With regard to protection of the environment and impact on plant growth the available Provisional Phytotoxicity Based Investigation Levels (PIL) published in the *Guidelines for the NSW Site Auditor Scheme* (NSW EPA / DEC, 2006) and EIL published in the NEPM 1999 for cadmium and mercury are used.

For discrete soil samples, the individual concentrations of analytes, except Cd and Hg, were assessed against the HIL B / HSL B / ESL / EIL. The individual concentrations of Cd and Hg were assessed against the PIL and HIL B.

For asbestos, the assessed soil must not contain bonded ACM in excess of 0.01% w/w and surface soil within the site should be free of visible ACM, and friable asbestos in the soil should not exceed 0.001% w/w.

The soil will be deemed contaminated or containing contamination "hot spots" if the above criteria are unfulfilled. Further investigation, remediation and/or management will be recommended if the area of concern is found to be contaminated or contain contamination "hot spots".

LABORATORY TEST RESULTS, ASSESSMENT & DISCUSSION

Copies of the actual laboratory test results certificates from SGS are kept in the offices of Geotechnique and will be provided upon request. The test results are also presented in Tables D to H together with the available assessment criteria adopted. A discussion of the test data is presented in the following subsections.

Metals

The Metals test results for discrete selected soil samples are presented in Tables D1 and D2 and as shown, all concentrations of Metals were below the available relevant EIL, HIL B. All Cd and Hg concentrations were also below the relevant PIL.

TRH and BTEX

The TRH and BTEX test results for the discrete selected soil samples are presented in Table E. As shown in Table F the concentrations of F1 (TRH C6-C10 less BTEX), F2 (TRH >C10-C16 less Naphthalene), F3 (TRH >C16-C34), F4 (TRH >C34-C40) and BTEX were below the relevant HSL B and / or ESL adopted.

PAH

The PAH test results for the selected discrete soil samples are presented in Table F and as shown, all BaP, BaP TEQ, Naphthalene and Total PAH were below the relevant HIL B or ESL or HSL B or EIL adopted.

ОСР

The OCP test results for selected discrete soil samples are presented in Table G and as indicated, OCP were well below the relevant HIL B. The concentrations of DDT were also below the EIL.

РСВ

The PCB test results for the selected discrete soil samples are presented in Table G and as shown, the PCB concentrations were below the relevant HIL B adopted.

Phenols

The Phenols test results for the selected discrete soil samples are presented in Table G and as shown, the Phenols concentrations were well below the relevant HIL B adopted.

Cyanides

The Cyanides test results for the selected discrete soil samples are presented in Table G and as shown, the Cyanides concentrations were well below the relevant HIL B adopted.

Asbestos

The asbestos results for the selected discrete soil samples are presented in Table H and as shown, no friable asbestos was detected at the laboratory detection limit of 0.001%.

CONCLUSION AND RECOMMENDATIONS

Based on this assessment, it is considered that soil samples, recovered from boreholes BH11 to BH16 in conjunction with geotechnical investigation, are unlikely to pose a risk of harm to human health and the terrestrial environment and are environmentally suitable for the proposed development.

If suspect materials (identified by unusual staining, odour, discolouration or inclusions such as building rubble, asbestos sheets / pieces, ash material, etc) are encountered during the construction stage, we recommend that this office is contacted for assessment and necessary action.

LIMITATIONS

Within the stated scope of work, the services performed by Geotechnique in preparation of this report were conducted in a manner consistent with the level of quality and skill generally exercised by members of the profession and consulting practice.

This report has been prepared for Nix Anderson Pty Ltd for the purpose stated within. Any reliance on this report by other parties shall be at such parties' sole risk as the report might not contain sufficient information for other purposes.

This report shall only be presented in full and may not be used to support any other objective than those set out in the report, except where written approval is provided by Geotechnique.

The information in this report is considered accurate at completion of field sampling (13 July 2015) and in accordance with current site conditions. Any variations to the site form or use beyond this date might nullify the conclusions stated.

No contamination assessment can eliminate all risk; even a rigorous professional assessment might not detect all contamination within the investigated locations.

8

13188/4-AA 160 Burwood Road, Concord

Reference should be made to the attached "Environmental Notes" for details of the limitations of this assessment.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Yours faithfully GEOTECHNIQUE PTY LTD

DANDA SAPKOTA Senior Environmental Engineer

Attached	Attachment A	Drawing No 1318
	Attachment B	Engineering Bore
	Attachment C	Laboratory Analy

Attachment D

Drawing No 13188/3-AA1 (Borehole Locations) Engineering Borehole Logs Laboratory Analytical Results Summary Tables (Tables A to H) Environmental Notes

LIST OF REFERENCES

Chapman et al. 2004, Soil Landscape Series Sheet 9030, Scale 1:100,000 (Sydney), Soil Conservation Service of NSW, Sydney.

Contaminated Land Management Act

Herbert C 1983, Geological Series Sheet 9130, Scale 1:100,000 (Sydney), Department of Minerals and Energy, NSW, Sydney.

NEPM 1999 (April 2013), National Environment Protection (Assessment of Site Contamination) Measure (NEPM), National Environmental Protection Council (NEPC), Australia.

ATTACHMENT A

ATTACHMENT B

	Pro Lo	ent : oject catio	t: on:	Pi 16 Ci	ropos 60 Bu oncor		velo Roa	pmen ad,	t Bore Date Logg	No.: 1 hole N : 09/0 ed/Che	o. : 07/20 ⁷ cked k	11 15 9y: MT	
			amet		ounti 125	-	nm	tility iv	lounted slope : bearing : deg.		eg. um :	R.L. SI	u <mark>rface :</mark> ≅3.5 AHD
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
		GP GP GP GP			N=12 9,7,5 N=5 3,2,3 N=5 3,2,3 N=40 11,20,20	0 1 2 3 2 3 3 4 5 6 7 8 9 9		SM	ASPHALT PAVEMENT FILL: Sandy Gravel, course grained, brown FILL: Sandy Gravel, coarse grained, yellow FILL: Silty Sandy Clay, medium plasticity, red brown Silty SAND, fine to medium grained, brown to red, with some ironstone SANDSTONE, grey-brown, low to medium strength, extremely weathered Refer to Cored Borehole		D		Groundwater at 4.0m

engineering log cored borehole

	Clien Proje Loca	ct:	P 1(lix Anderson Pty Ltd roposed Development 60 Burwood Road, concord				E	3o Da	b No. : 1 rehole No te: 09/07	5.: 11 7/2015	
H	drill r	nodel a		mounting : Utility Mou	inted			 slope		gged/Chec deg.		≅3.5
	core			NMLC	inteu			bearing		deg.		=0.0 AHD
\vdash				CORE DESCRIPTION				bearing	•		DEFECT DETAILS	
		s S	bol		ing			ooint load index		defect	DESCRIPTIO	N
harrel lift	water loss/level	depth of R.L. in meters	graphic log	rock type, grain characteristics, colour, structure, minor components.	weathering	strength	E	strength I _S (50)	0000	spacing (mm)	type, inclination, thick planarity, roughness, c Specific	mess,
		-5 ::		Coring Commenced at 5.0m								
				SANDSTONE, fine to coarse grained, grey to red-brown	SW	M-H		× × ×				
				Borehole No. 11 terminated at 10.2m							- - - - - - - - - - - - -	

form no. 003 version 03 - 09/10

	Pro Lo	ent : oject catio	: on:	P 16 C	ropos 60 Bu oncor		velc Ro	opmen ad,	t Bore Date Logge	No.: 1 hole N : 09/(ed/Che	o. : 07/20 ⁷ cked k	12 15 by: MT	
d					ounti	-		tility M	ounted slope :		-	R.L. si	urface: ≅3.4
L	ho	le di	amet	er :	125		nm		bearing : deg.	dat	um :		AHD
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
		GP GP			N=7 3,3,4	0 — — — 1 —			TOPSOIL: Sandy Silt, low plasticity, dark brown, with some roots // FILL: Silty Clayey Sand, fine to coarse grained, with some gravel FILL: Silty Clay, medium plasticity, grey, with some gravel				
	•	GP			N=8 4,3,5								Groundwater at 1.8m
		GP			N=5								- - - -
		GP			1,2,3			SC-SM	Silty Clayey SAND, fine to medium grained,	W			
					N=2 1,1,1			CI	black to dark brown, with some shell fragments Silty Sandy CLAY, medium plasticity, red to brown	M>PL	L		- - - -
						 6							
					N=10 3,5,5								Becoming harder to d <u>rill</u>
					N=R 12,16/ 100			SC-SM	Silty Clayey SAND, fine to coarse grained, grey-brown to red	W	MD		Bedrock
						 							- - - -

	Pro Lo	ient oject catio	: : on :	Pi 16 Co	opos 30 Bu oncor	rwood d	velc Ro	opmen ad,		Bore Date Logge	No.: 1 hole N : 09/(ed/Che	o. : 07/20 [/] cked k	12 15 by: MT	
a			el an amet				u nm	tility M	ounted bearing :	slope : deg.		eg. um :	R.L. SI	urface : ≅3.4 AHD
method	/ater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPT soil type, plasticity or particle c colour, secondary and minor co	FION haracteristic, omponents.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
									Borehole No. 12 terminated at 9 Bit refusal	.7m due to TC-				

	Pro Lo	ent : oject catio	t: on:	Pi 16 C	ropos 60 Bu oncor		velo Ro	opmen ad,	t Bore Date Logge	No.: 1 hole N : 10/(ed/Che	l o. : 07/20 ⁷ cked k	13 15 9y: MT	
d					ounti	-		tility M	lounted slope :		-	R.L. sı	urface: ≅3.4
	ho	le di	amet	er:	125		nm		bearing : deg.	dat	um :		AHD
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
	V	GP GP GP			N=12 4,7,5 N=6 3,3,3	0 1 2			TOPSOIL: Silty Sand, fine to medium grained, dark brown, with some grass roots FILL: Silty Clay, medium plasticity, brown- orange, with some gravel FILL: Silty Clay, medium plasticity, brown-grey Silty Clayey SAND, fine to medium grained	W			Groundwater at 2.5m
	Image: Stress of the stres of the stress of the stress of the stress					3 — - - 4 — - 5 — -			Silty Clayey SAND, fine to medium grained, yellow, with some sandstone gravel Silty SAND, fine to coarse grained, grey SANDSTONE, fine to coarse grained, grey- brown to yellow, extremely weathered, low strength	w	D		Groundwater at 2.5m
						6 —			Refer to Cored Borehole				

engineering log cored borehole

	Client Proje Locat	ct :	P 1	lix Anderson Pty Ltd roposed Development 60 Burwood Road, concord						B D	ate :	ole I 10/	No. '07/2	: 13	
	drill n	nodel	and	mounting :	Utility Mounte	ed			slo	pe :	•	de	g.	R.L. surface :	≅3.4
	core	size:		NMLC	2			be	earir	ng :		de	g.	datum :	AHD
		Ŀ	_	CORE DESCR	PTION			noi	nt lo	ad			D	EFECT DETAILS	
i lift	level	depth of R.L. in meters	graphic log	rock type, grain chara		weathering	gth	· i	ndex		def spac	cing		DESCRIPTIO type, inclination, thick	
barrel lift	water loss/level	dept in me	grap	colour, structure, minor	components.	weat	strength		s(50) ∟ [™] ∣	н vн	m) 20 500 20 500		0	planarity, roughness, co Specific	
				Coring Commenced at 5.8m	arging brown to	DW	1 14								
		6		SANDSTONE, fine to coarse red-grey	grained, brown to	Dvv	L-M						-		
		_		SANDSTONE, fine to coarse	grained, grey to	DW	L-M		×				-		
		_		red-brown									-		
		7 ——											-		
		_		_CORE LOSS: 7.4-7.5m										Core loss 100mm	
		_		SANDSTONE, fine to coarse \red-brown	graineu, grey to	DW DW-	M M-H			X					
		8		SANDSTONE, fine to coarse grey	grained, brown to	SW							-		
		_											-		
		9								×					
		_											-		
		_													
									×				-		
				Borehole No. 13 terminated a	at 10.0m								-		
		_													
		_											-		
		11 —											-		
		_											-		
		_											-		
		12 —											ŀ		
		_											-		
		13 —											-		
		_											-		
		 14											ŀ		
		_											$\left \right $		
		_													
		 15											Ŀ		
		13													

	Pre	ient : oject catio	::	P 16	ropos	rwood	velo	opment	Borel Borel Date	lo. : 1 hole N : 10/(ed/Che	o. : 07/201	14 15	
d					ounti	ng :	U	Itility M	ounted slope :	de	eg.	R.L. sı	urf ace : ≅3.2
	ho	le di	amet	er :	125	n	nm		bearing : deg.	dat	um :		AHD
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
		GP			N=6 1,2,4				TOPSOIL: Silty Sand, fine to medium grained, brown, with some grass roots FILL: Silty Clay, medium plasticity, grey-brown FILL: Silty Sand, fine to medium grained, brown, with trace of iron shards				
	V	GP GP			N=20 11,15,5	2			Silty SAND, fine to medium grained, grey- brown				-
					N=9 10,5,4			SM	Silty SAND, fine to coarse grained, grey-brown Silty SAND, fine to medium grained, grey	W	MD MD		Groundwater at 3.0m
					N=13 3,5,8			SC-SM	Silty Clayey SAND, fine to coarse grained, red- brown	W	MD		
					N=23 5,11,12	6 —— — —		SM	Silty SAND, fine to coarse grained, red- brown, with some sandstone fragments	w	MD		
					<mark>N=R</mark> \25/50_	7 —			SANDSTONE, red-brown to grey, extremely weathered, low strength SANDSTONE, grey to red, distinctly weathered, low to medium strength				Bedrock

	Pre	ent : oject catio	::	Pi 16	ropos	rwood	velc	pment		Bore Date	No.: 1 hole N : 10/(ed/Che	o. : 07/20 ⁷	14 15	
d			el an			ng :	U	tility M	ounted	slope :	de	eg.	R.L. sı	u rface : ≅3.2
	ho	le di	amet	er :	125	r	nm		bearing :	deg.	dat	um :		AHD
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRI soil type, plasticity or particle colour, secondary and minor	e characteristic,	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
						-10			Borehole No. 14 terminated at	10.0m				
									Borehole No. 14 terminated at	10.0m				
						17 —								
														_
						 18								
						 19								-
						_								

Pi Lo	lient : roject ocatio	t: on:	P 16 C	ropos 60 Bu oncor		velc Ro	opmen ad,		Bore Date Logge	No.: 1 hole N : 13/(ed/Che	o. : 07/20 ⁷ cked k	15 15 by: MT	
				ounti	-		tility M	ounted	slope :	de	-	R.L. sı	urface: ≅3.2
	ole di			125		nm	-	bearing :	deg.	dat	um :	_	AHD
method groundwater		PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTIC soil type, plasticity or particle ch. colour, secondary and minor con	aracteristic, nponents.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
	GP GP	IId	90	9jj N=R 3,5,25/50				colour, secondary and minor con TOPSOIL: Silty Sand, fine to med brown, with some grass FILL: Silty Sandy Clay, medium pl brown Borehole No. 15 terminated at 1.3 refusal in possible sandstone boul	lium grained, lasticity,				
					9								

	Pro Lo	ient ojeci catio	t: on:	Pi 16 C	ropos 60 Bu oncor		velo Ro	pmen ad,	t Bore Date Logge	No.: 1 hole N : 13/(ed/Che	l o. : 07/20 ⁻ cked k	16 15 by: MT	
			lel an			-		tility M	lounted slope :		-	R.L. sı	urface: ≅3.2
	ho	le di	amet		125		nm		bearing : deg.	dat	um :		AHD
method	groundwater	env samples	PID reading (ppm)	geo samples	field test	depth or R.L. in meters	graphic log	classification symbol	MATERIAL DESCRIPTION soil type, plasticity or particle characteristic, colour, secondary and minor components.	moisture condition	consistency density index	hand penetrometer kPa	Remarks and additional observations
		GP				0			TOPSOIL: Silty Sand, fine to medium grained, brown, with grass roots				
		GP			N=10 3,6,4	_			FILL: Silty Clay, medium plasticity, grey-brown				-
						1			FILL: Silty Sand, fine to coarse grained, brown, with some gravel				
		GP			N=12 3,4,8								
						2 — — —							
					N=R 25/50	3			FILL: Silty Sand, fine grained, brown, with some boulders				
						 4							- - - -
						 5							- - -
													-
						-		SM	Silty SAND, fine to medium grained, dark brown, with some shell fragments	W			-
						7							
						8	-		Refer to Cored Borehole				-
						9 — —							-
													_

engineering log cored borehole

	Clien Proje Locat	ct:	P 1	lix Anderson Pty Ltd Proposed Development 60 Burwood Road, Concord							Bo Da	reho te :	ole 13	Nc 3/07	3188/3 .: 16 7/2015 ked by : MT	
	drill r	nodel	and	mounting : Util	ity Moun	ted				slope			d	eg.	R.L. surface :	≅3.2
	core	size:		NMLC				k	bea	aring	:		d	eg.		AHD
		s.r.	g	CORE DESCRIPTION	N	5		р	oin	t load					DEFECT DETAILS	
barrel lift	water Ioss/level	depth of R in meters	graphic log	rock type, grain characterist colour, structure, minor compo		weathering	strength		stre I _S (dex ength (50) ^M _H ^{∨⊦}	1 00	defe spac mi ۇ ق ۋ	cing m)	1	DESCRIPTIC type, inclination, thicl planarity, roughness, o Specific	kness,
				Coring Commenced at 7.6m											Cara loss 250mm	
				CORE LOSS: 7.6-7.85m	d rod	DW-	м								Core loss 250mm	
		8 — — — 9 — —		SANDSTONE, fine to coarse graine brown, grey	a, rea-	SW	IVI			×					-	
				SANDSTONE, fine to coarse graine brown	ed, red-	DW- SW	M-H			×					- - - - - -	
		 12		SANDSTONE, fine to coarse graine Borehole No. 16 terminated at 12.2		SW- FR	H- VH			×					- - - -	

form no. 003 version 03 - 09/10

KEY TO SYMBOLS

Symbol Description

Strata symbols

	Pavement (Bitumen, Concrete Slab, etc)
	Fill
	Silty Sand
	Sandstone
	Topsoil
	Silty Clayey Sand
2272 2272 2272 2272	Silty Sandy Clay medium plasticity
<u>Misc. S</u>	ymbols
_	Groundwater

Descriptions of various line types (solid, dotted, etc.)

____ Profile change

___ Gradual profile change

Notes:

- 1. Exploratory borings were drilled between 13/07/2015 and 13/07/2015 using a 50, 100 and 125mm diameter continuous flight power auger.
- 2. These logs are subject to the limitations, conclusions and recommendations in this report.
- 3. Results of tests conducted on samples recovered are reported on the logs.

KEY TO SYMBOLS

Symbol Description

Strata symbols

Sandstone

Core Loss

Misc. Symbols

 \times Point Load Strength

Descriptions of various line types (solid, dotted, etc.)

- ____ Profile change
- ____ Gradual profile change

Notes:

- 1. Exploratory borings were drilled between 13/07/2015 and 13/07/2015 using a 50, 100 and 125mm diameter continuous flight power auger.
- 2. These logs are subject to the limitations, conclusions and recommendations in this report.
- 3. Results of tests conducted on samples recovered are reported on the logs.

Log Column	Symbol/Value	Description							
Drilling Method	V-bit	Hardened steel 'V' shaped bit attached to auger							
0	TC-bit	Tungsten Carbide bit attached to auger							
	RR	Tricone (Rock Roller) bit							
	DB	Drag bit							
	BB	Blade bit							
Groundwater	Dry	Groundwater not encountered to the drilled or auger refusal depth							
		Groundwater level at depths shown on log							
		Groundwater seepage at depths shown on log							
Environment Sample	GP G	Glass bottle and plastic bag sample over depths shown on log Glass bottle sample over depths shown on log							
	P	Plastic bag sample over depths shown on log							
PID Reading	100	PID reading in ppm							
Geotechnical Sample	DS	Disturbed Small bag sample over depths shown on log							
	DB	Disturbed Bulk sample over depths shown on log							
<u> </u>	U ₅₀	Undisturbed 50mm tube sample over depths shown on log							
Field Test	N=10 3,5,5	Standard Penetration Test (SPT) 'N' value. Individual numbers indicate blows per 150mm penetration.							
	N=R	'R' represents refusal to penetration in hard/very dense soils or in cobbles or							
	10,15/100	boulders.							
		The first number represents10 blows for 150mm penetration whereas the second							
		number represents 15 blows for 100mm penetration where SPT met refusal							
	DCP/PSP 5	Dynamic Cone Penetration (DCP) or Perth Sand Penetrometer (PSP). Each							
		number represents blows per 100mm penetration. 'R/10' represents refusal after							
	6	10mm penetration in hard/very dense soils or in gravels or boulders.							
	R/10								
Classification	GP	Poorly Graded GRAVEL							
	GW	Well graded GRAVEL							
	GM	Silty GRAVEL							
	GC	Clayey GRAVEL							
	SP	Poorly graded SAND							
	SW	Well graded SAND							
	SM SC	Silty SAND Clayey SAND							
	ML	SILT / Sandy SILT / clayey SILT, low plasticity							
	ML	SILT / Sandy SILT / clayey SILT, medium plasticity							
	MH	SILT / Sandy SILT / clayey SILT, high plasticity							
	CL	CLAY / Silty CLAY / Sandy CLAY / Gravelly CLAY, low plasticity							
	CI	CLAY / Silty CLAY / Sandy CLAY / Gravelly CLAY, medium plasticity							
	СН	CLAY / Silty CLAY / Sandy CLAY / Gravelly CLAY, high plasticity							
Moisture Condition									
Cohesive soils	M <pl< td=""><td>Moisture content less than Plastic Limit</td></pl<>	Moisture content less than Plastic Limit							
	M=PL M>PL	Moisture content equal to Plastic Limit Moisture content to be greater than Plastic Limit							
	IVI>FL	Moisture content to be greater than Plastic Linit							
Cohesionless soils	D	Dry - Runs freely through hand							
	M	Moist - Tends to cohere							
	W	Wet - Tends to cohere							
Consistency		Term Undrained shear strength, C _u (kPa) Hand Penetrometer (Qu)							
Cohesive soils	VS	Very Soft ≤12 <25							
	S	Soft >12 ≤25 25 - 50							
	F	Firm >25 ≤50 50 − 100							
	St	Stiff >50 ≤100 100 - 200							
	VSt H	Very Stiff >100 ≤200 200 – 400 Hard >200 >400							
Density Index		Term Density Index, I _D (%) SPT 'N' (blows/300mm)							
Cohesionless soils	VL	Very Loose ≤15 ≤5							
	L	Loose >15 ≤35 >5 ≤10							
	Μ	Medium Dense >35 ≤65 >10 ≤30							
	D	Dense >65 ≤85 >30 ≤50							
	VD	Very Dense >85 >50							
Hand Penetrometer	100	Unconfined compressive strength (q _u) in kPa determined using pocket							
Remarks	200	penetrometer, at depths shown on log Geological origin of soils							
Romana	Residual	Residual soils above bedrock							
	Alluvium	River deposited Alluvial soils							
	Colluvial	Gravity deposited Colluvial soils							
	Aeolian	Wind deposited Aeolian soils							

GEOTECHNIQUE PTY LTD

AS1726 – Unified Soil Classification System

Major Divisions Particle siz (mm)		Particle size	Group Symbol	Typical Names	Field Ident	ifications Sand a	-				Laboratory classifie	ation	
	BOULDERS	200							% (2) < 0.075mm	Plasticity of Fine Fraction	$C_u = D_{60}/D_{10}$	$C_c = (D_{30})^2 / (D_{10}D_{60})$	Notes
	COBBLES	63						'su					
		Coarse 20	GW	Well-graded gravels, gravel-sand mixtures, little or no fines	Wide range in grain size and substantial amounts of all intermediate sizes, not enough fines to bind coarse grains, no dry strength			or Divisions'	0-5	-	>4	between 1 and 3	1. Identify lines by the method given for fine grained soils
	GRAVELS (more than half of coarse fraction is		GP	Poorly graded gravels, gravel- sand mixtures, little or no fines, uniform gravels	some intermedia	one size or range o ate sizes missing, arse grains, no dry	not enough	the criteria given in 'Major	0-5	-	Fails to co	mply with above	grained sons
COARSE GRAINED SOILS (more than half of	larger than 2.36mm)	Medium 6	GM	Silty gravels, gravel-sand-silt mixtures	'Dirty' materials zero to medium	with excess of no dry strength	n-plastic fines,	riteria giv	12-50	Below 'A' line or <i>I_p<4</i>	-	-	2. Borderline classifications occur when the percentage of
material less 63mm is larger than 0.075mm)		Fine 2.36	GC	Clayey gravels, gravel-sand-clay mixtures	'Dirty' materials medium to high	with excess of pla dry strength	stic fines,	요	12-50	Above 'A' line or <i>I_p</i> >7			fines (fraction smaller than 0.075mm size) is
		Coarse 0.6	SW	Well-graded sands, gravelly sands, little or no fines		rain size and subs te sizes, not enou o dry strength		s according	0-5	- >6		between 1 and 3	greater than 5% and less than 12%. Borderline classifications
(more	SANDS (more than half of	Medium 0.2	SP	Poorly graded sands and gravelly sands; little or no fines, uniform sands	Predominantly one size or range of sizes with some intermediate sizes missing, not enough fines to bind coarse grains, no dry strength				0-5	-	Fails to comply with above		require the use of dual symbols e.g. SP-SM, GW- GC
	coarse fraction is smaller than 2.36mm)		SM	Silty sands, sand-silt mixtures	'Dirty' materials zero to medium	with excess of no dry strength	n-plastic fines,	classification of fractions	12-50	Below 'A' line or <i>l_p<</i> 4	-	-	
		Fine 0.075	SC	Clayey sand, sand-clay mixtures	'Dirty' materials medium to high	with excess of pla dry strength	stic fines,	for	12-50	Above 'A' line of <i>I_p</i> >7	-	-	
			ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight	Dry Strength None to low	Dilatancy Quick to slow	Toughness None	sing 63mm		Below 'A' line			
	SILTS & CLAYS (liqu	id limit < 50%)	CL, CI	plasticity Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays	Medium to high	None to very slow	Medium	of material passing	Ē	Above 'A' line	40		
FINE GRAINED			OL	Organic silts and organic silty clays of low plasticity	Low to medium	Slow	Low	tion of ma	sing 0.075	Below 'A' line	230	c	
SOILS (more than half of material less than 63mm is smaller than			МН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts	Low to medium	Slow to none	Low to medium	the gradation	More than 50% passing 0.075mm	Below 'A' line	CL CL 200 000 000 000 000 000 000 00	CI NE	
0.075mm)	SILTS & CLAYS (liqu	id limit > 50%)	СН	Inorganic clays of medium to high plasticity, fat clays	High to very high	None	High	Use	vore than	Above 'A' line	- UI Dasticity Dasticity Last		OH or
			ОН	Organic clays of medium to high plasticity, organic silts	Medium to high	None to very slow	Low to medium		~	Below 'A' line		OL ar ML	МН
	HIGHLY ORGANIC S	OILS	Pt	Peat and highly organic soils	Identified by col generally by fibr	our, odour, spong ous texture	y feel and		Effervesco	es with H ₂ O ₂		20 30 40 50 Liquid Limit (W _L), perce	60 70 80 ent

Log Symbols & Abbreviations (Cored Borehole Log)

Log Column	Symbol	Description	
Core Size	NQ	Nominal Core Size (mm 47)
	NMLC	52	
Water Loss	HQ	63 Complete water loss	
		Partial water loss	
Weathering	FR	Fresh	Rock shows no sign of decomposition or staining
	SW	Slightly Weathered	Rock is slightly discoloured but shows little or no change of strength from fresh rock
	DW	Distinctly Weathered	Rock strength usually changed by weathering. The rock may be highly discoloured, usually by ironstaining. Porosity may be increased by leaching, or may be decreased by deposition of weathering products in pores
	EW	Extremely Weathered	Rock is weathered to such an extent that it has 'soil' properties, i.e. it either disintegrate or can be remoulded, in water
	RS	Residual Soil	Soil developed on extremely weathered rock; the mass structure and substance fabric are no longer evident; there is a large change in volume but soil has not been significantly transported
Strength	-		Point Load Strength Index (I _{s50} , MPa)
	EL VL	Extremely Low	≤0.03 >0.03 ≤0.1
	L	Very Low Low	>0.1 ≤0.3
	M	Medium	>0.3 ≤1
	н	High	>1 ≤3
	VH	Very High	>3 ≤10
Defect Specing	EH	Extremely High	>10
Defect Spacing		Description Extremely closely space	d Spacing (mm) d <20
		Very closely spaced	20 to 60
		Closely spaced	60 to 200
		Medium spaced	200 to 600
		Widely spaced	600 to 2000
		Very widely spaced	2000 to 6000
Defect Description		Extremely widely spaced	d >6000
Defect Description Type	Вр	Bedding parting	
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Fp	Foliation parting	
	Jo	Joint	
	Sh	Sheared zone	
	Cs Ds	Crushed seam Decomposed seam	
	ls	Infilled seam	
Macro-surface geometry	St	Stepped	
	Cu Un	Curved Undulating	
	lr	Irregular	
	PI	Planar	
NF (
Micro-surface geometry	Ro Sm	Rough Smooth	
	SI	Slickensided	
	cn	clean	
Coating or infilling	sn	stained veneer	
	vn cg	coating	

Grain S	Size mm				Be	dded rock	s (mostly	sedimentary)					
More than 20	20		ain Size scription			At leas	st 50% of	grains are of car	bonate	At least 50% of grains are of fine-grained volcanic rock			
	6	RUD	DACEOUS	CONGLOMERATE Rounded boulders, cobbles and gravel cemented in a finer matrix Breccia Irregular rock fragments in a finer matrix			DLOMITE ed)	Calcirudite		Fragments of volcanic ejecta in a finer matrix Rounded grains AGGLOMERATE Angular grains VOLCANIC BRECCIA	SALINE ROCKS Halite Anhydrite		
	0.6	ARENACEOUS	Coarse Medium Fine	SANDSTONE Angular or rounded grai cemented by clay, calci Quartzite Quartz grains and silice Arkose Many feldspar grains Greywacke	te or iron minerals	-	LIMESTONE and DOLOMITE (undifferentiated)	Calcarenite		Cemented volcanic ash	Gypsum		
	0.06 0.002 Less than 0.002	ARGII	LLACEOUS	Many rock chips MUDSTONE SHALE Fissile	SILTSTONE Mostly silt CLAYSTONE Mostly clay	Calcareous Mudstone		Calcisiltite Calcilutite	CHALK	Fine-grained TUFF	-		
Amorpho crypto-cry	us or			Flint: occurs as hands o Chert: occurs as nodule			calcareou	s sandstone			COAL LIGNITE		
				Granular cemented – e:	xcept amorphous roo	cks					_		
				SILICEOUS			SILICEOUS	CARBONACEOUS					
				specimens and is best s	EDIMENTARY ROCKS stranular cemented rocks vary greatly in strength, some sandstones are stronger than many Igneous rocks. Bedding may not show in har pecimens and is best seen in outcrop. Only sedimentary rocks, and some metamorphic rocks derived from them, contain fossils calcareous rocks contain calcite (calcium carbonate) which effervesces with dilute hydrochloric acid								

AS1726 – Identification of Sedimentary Rocks for Engineering Purposes

AS1726 – Identification of Metamorphic and Igneous Rocks for Engineering Purposes

liated rocks (mostly metamorphic)		Rocks with	Grain size (mm)					
		Grain size description	Pe	gmatite		Pyrosenite	More than 20	
GNEISS	MARBLE					Peridorite	20	
Well developed but often widely spaced foliation sometimes with schistose bands	QUARTZITE		GRANITE	Diorite	GABBRO		6	
	Granulite	COARSE	phorphyritic and	are then described,				
Migmatite Irregularly foliated: mixed schists and gneisses	HORNFELS						2	
SCHIST Well developed undulose foliation; generally much mica	Amphibolite		Micorgranite	Microdiorite			0.6	
	Serpentine	MEDIUM			Dolerite		0.2	
							0.06	
PHYLLITE Slightly undulose foliation; sometimes 'spotted'			RHYOLITE	ANDESITE	DACALT		0.002	
SLATE Well developed plane cleavage (foliation)		FINE			BASALI		Less than 0.002	
Mylonite Found in fault zones, mainly in igneous and metamorphic areas			Obsidian	Volcanic glass			Amorphous or cryptocrystallin e	
Ē			Pale<			>Dark		
SILICEOUS Mainly SILICEOUS				INTERMEDIATE Some quartz	Little or no			
METAMORPHIC ROCKS Most metamorphic rocks are distinguished by foliation which may impart fissility. Foliation in gneisses is best observed in outcrop. Non- foliated metamorphics are difficult to recognize except by association. Any rock baked by contact metamorphism is described as 'hornfels' and is generally somewhat stronger than the parent rock			IGNEOUS ROCKS Composed of closely interlocking mineral grains. Strong when fresh; not porous Mode of occurrence : 1 Batholith; 2 Laccoliths; 3 Sills; 4 Dykes; 5 Lava Flows; 6 Veins					
	GNEISS Well developed but often widely spaced foliation sometimes with schistose bands Migmatite Irregularly foliated: mixed schists and gneisses SCHIST Well developed undulose foliation; generally much mica PHYLLITE Sightly undulose foliation; sometimes 'spotted' SLATE Well developed plane cleavage (foliation) Mylonite Found in fault zones, mainly in igneous and metamorphic areas E HIC ROCKS phic rocks are distinguished by foliation in gneisses is best observer orphics are difficult to recognize exceed dby contact metamorphism is describ y somewhat stronger than the parent	GNEISS MARBLE Well developed but often widely spaced foliation sometimes with schistose bands QUARTZITE Migmatite Irregularly foliated: mixed schists and gneisses HORNFELS SCHIST Well developed undulose foliation; generally much mica Amphibolite PHYLLITE Slightly undulose foliation; sometimes 'spotted' Serpentine SLATE Well developed plane cleavage (foliation) Mainly SILICEOUS Mylonite Found in fault zones, mainly in igneous and metamorphic areas Mainly SILICEOUS E Mainly SILICEOUS	GNEISS MARBLE QUARTZITE QUARTZITE Spaced foliation sometimes with schistose bands Granulite COARSE Granulite Migmatite Granulite Irregularly foliated: mixed schists HORNFELS Amphibolite Amphibolite SCHIST Amphibolite Well developed undulose foliation; generally much mica Serpentine PHYLLITE Sightly undulose foliation; sometimes 'spotted' SLATE Well developed plane cleavage (foliation) Mylonite FINE Found in fault zones, mainly in igneous and metamorphic areas IGNEOUS RC Composed of Mode of occu E Mainly IGNEOUS RC Composed of Mode of occu IIC ROCKS phic rocks are distinguished by foliation which may Foliation in gneisses is best observed in outcrop. Non-rophics are difficult to recegnize except by association. IGNEOUS RC Composed of Mode of occu Wold of occu is optical as thornfels' Mode of occu	GNEISS MARBLE Grain size description Pe GNEISS Well developed but often widely spaced foliation sometimes with schistose bands MARBLE GUARTZITE GRANITE Migmatite Granulite COARSE These rocks are phorphyritic and for example, as Migmatite HORNFELS Amphibolite Micorgranite SCHIST HORNFELS Amphibolite Micorgranite SCHIST Well developed undulose foliation; generally much mica Serpentine MEDIUM Micorgranite PHYLLITE Sightly undulose foliation; sometimes spotted' SLATE These rocks are phorphyritic and as porphyries SLATE Well developed plane cleavage (foliation) Obsidian Obsidian Functional in fault zones, mainly in igneous and metamorphic areas SLICEOUS IGNEOUS ROCKS Funct CROCKS Mainly SLICEOUS IGNEOUS ROCKS Pale Mainly IGNEOUS ROCKS Composed of closely interlocking Much quartz IIC ROCKS phic rocks are distinguished by foliation which may Foliation in gneisses is best opise reved in outcrop. Nonon d by contact metamorphism is described as 'hornfels' by somewhat stronger than the parent rock IGNEOUS ROCKS	GNEISS MARBLE Grain size description Pegmatite GNEISS Well developed but often widely spaced foliation sometimes with schistose bands QUARTZITE Granuite COARSE These rocks are sometimes phorphyritic and are then described, for example, as porphyritic granite Migmatite Irregularly foliated: mixed schists and gneises HORNFELS Micorgranite Microdiorite SCHIST HORNFELS Amphibolite Micorgranite Microdiorite SCHIST Amphibolite Micorgranite Microdiorite SCHIST Amphibolite Micorgranite Microdiorite Staft Serpentine MEDIUM These rocks are sometimes phorphyritic and are then described as porphyries Sightly undulose foliation; sometimes 'spotted' Serpentine MEDIUM These rocks are sometimes phorphyritic and are then described as porphyries SLATE Well developed plane cleavage (tolation; sometimes rights and metamorphic areas Obsidian Volcanic glass E Quantz INTERMEDIATE Some quartz IC ROCKS Mainly Sill CEOUS INTERMEDIATE Flore occks are distinguished by foliation which may Phorphyrities are distinguished by foliation which may Phorphyritie and are then described as porphyries INTERMEDIATE Store cocks are distinguished by foliation which may Phorphyritie and are themorphism is described as horm	GNEISS MARBLE Grain size Pegmatile GNEISS QUARTZITE Granuite GRANITE Diorite GABBRO Migmatite Granuite COARSE These rocks are sometimes GABBRO Migmatite Granuite COARSE These rocks are sometimes GABBRO Migmatite HORNFELS HORNFELS These rocks are sometimes Diorite GABBRO SCHIST Well developed undulose Amphibolite MEDIUM Micorgranite Microdiorite Dolerite SCHIST Well developed undulose foliation; generally much mica Serpentine MEDIUM These rocks are sometimes Dolerite StATE StATE Melnity Obsidian Volcanic glass BASALT Morite Supersprintic and are then described as porphyrite a	CNEISS MARBLE QUARTZITE Pegmatite Pegmatite Microson QUARTZITE QUARTZITE Granulite GRANITE Dionite GABBRO Migmatile Inregulary foliated: mixed schists Granulite COARSE These rocks are sometimes phorphyritic and are then described, for example, as porphyritic granite GABBRO Peridonite Migmatile Inregulary foliated: mixed schists HORNFELS Amphibolite Micorgranite Micordonite SCHIST Weil developed undulose foliation; generally much mica Amphibolite Micorgranite Micordonite Dolerite Staff Serpentine MEDIUM These rocks are sometimes phorphyritic and are then described as porphyries Dolerite Dolerite Staff Weil developed plane cleavage (fdation) FINE RHYOLITE ANDESITE Dolerite Myorite Foord in fault zones, mainly in gneous and metamorphic areas Obsidian Volcanic glass E E E Mainly SLICEOUS ACID INTERMEDIATE BASIC ULTRA BASIC Mich or gates are distinguished by foliation which may foliation ingresses is boat doscribed as honefles' by concert metamorphism is described as honefles' by some what stronger than the parent rock GRIEOUS ROCKS	

ATTACHMENT C

GEOTECHNIQUE PTY LTD

TABLE A TRIP SPIKE SAMPLE (Ref No: 13188/4-AA)

ANALYTES	Trip Spike TS1
BTEX	
Benzene	100%
Toluene	107%
Ethyl Benzene	99%
Xylenes	100%

Note : results are reported as percentage recovery of know n spike concentrations

TABLE B DUPLICATE SAMPLE (Ref No: 13188/4-AA)

.

	BH11	o/4-AA) Duplicate	RELATIVE PERCENTAGE
ANALYTES	0-0.15m	Dupneuto D1	DIFFERENCES (RPD)
	mg/kg	mg/kg	%
METALS	mg/kg	mg/kg	70
Arsenic	<3	<3	_
Cadmium	0.4	<0.3	_
Chromium	37	18	69
Copper	29	29	0
Lead	10	6	50
Mercury	0.01	<0.01	-
Nickel	36	6.7	137
Zinc	49	27	58
TOTAL PETROLEUM HYDROCARBONS (TPH)	-10	21	
F1 (C6-C10 less BTEX)	<25	<25	_
F2 (>C10-C16)	<25	<25	_
F3 (>C16-C34)	<90	<90	_
F4 (>C34-C40)	<120	<120	_
BTEX		1120	
Benzene	<0.1	<0.1	-
Toluene	<0.1	<0.1	_
Ethyl Benzene	<0.1	<0.1	_
Xylenes	<0.1	<0.3	_
POLYCYCLIC AROMATIC HYDROCARBONS	40.0	0.0	
Benzo(a)Pyrene TEQ	<0.3	<0.3	_
Total PAH	1	<0.8	-
Naphthalene	<0.1	<0.1	-
Benzo(a)Pyrene	<0.1	<0.1	-
ORGANOCHLORINE PESTICIDES (OCP)			
Hexachlorobenzene (HCB)	<0.1	<0.1	-
Heptachlor	<0.1	<0.1	-
Aldrin+Dieldrin	<0.15	<0.15	-
Endrin	<0.2	<0.2	-
Methoxychlor	<0.1	<0.1	-
Mirex	<0.1	<0.1	-
Endosulfan (alpha, beta & sulphate)	<0.5	<0.5	-
DDD+DDE+DDT	<0.6	<0.6	-
Chlordane (alpha & gamma)	<0.2	<0.2	-
POLYCHLORINATED BIPHENYLS (PCB)			
Total PCB	<1	<1	-
CYANIDES & PHENOLS			
Cyanides	<0.5	<0.5	-
Phenols	<5	<5	-

TABLE C SPLIT SAMPLE (Ref No: 13188/4-AA)

(Ref No: 13188/4-AA)									
	BH13	Split Sam ple	RELATIVE PERCENTAGE						
ANALYTES	0-0.15m	S1	DIFFERENCES (RPD)						
	mg/kg	mg/kg							
	(SGS)	(ENVIROLAB)	%						
METALS									
Arsenic	6	4	40						
Cadmium	0.5	<0.4	-						
Chromium	16	15	6						
Copper	20	35	55						
Lead	24	15	46						
Mercury	0.02	<0.1	-						
Nickel	7.5	14	60						
Zinc	32	32	0						
TOTAL PETROLEUM HYDROCARBONS (TPH)									
F1 (C6-C10 less BTEX)	<25	<25	-						
F2 (>C10-C16)	<25	<50	-						
F3 (>C16-C34)	<90	<100	-						
F4 (>C34-C40)	<120	<100	-						
втех									
Benzene	<0.1	<0.2	-						
Toluene	<0.1	<0.5	-						
Ethyl Benzene	<0.1	<1	-						
Xylenes	<0.3	<3	-						
POLYCYCLIC AROMATIC HYDROCARBONS (PAH)									
Benzo(a)Pyrene TEQ	<0.3	<0.5	-						
Total PAH	<0.8	<1.55	-						
Naphthalene	<0.1	<0.1	-						
Benzo(a)Pyrene	<0.1	<0.05	-						
ORGANOCHLORINE PESTICIDES (OCP)									
Hexachlorobenzene (HCB)	<0.1	<0.1	-						
Heptachlor	<0.1	<0.1	-						
Aldrin+Dieldrin	<0.15	<0.2	-						
Endrin	<0.2	<0.1	-						
Methoxychlor	<0.1	<0.1	-						
Mirex	<0.1	-	-						
Endosulfan (alpha (I), beta (II) & sulphate)	<0.5	<0.3	-						
DDD+DDE+DDT	<0.6	<0.3	-						
Chlordane (alpha & gamma)	<0.2	<0.2	-						
POLYCHLORINATED BIPHENYLS (PCB)									
Total PCB	<1	<0.7	-						
CYANIDES & PHENOLS									
Cyanides	<0.5	<0.5	-						
Phenols	<5	<5	-						

TABLE D1 METALS, CATION EXCHANGE CAPACITY (CEC) & pH TEST RESULTS DISCRETE SAMPLES

(Ref No: 13188/4-AA)

ľ	(-	3100/								1
			METALS (mg/kg)								
Sample Location	Depth (m)	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MERCURY	NICKEL	ZINC	CEC (cmq/kg)	Hd
BH11	2.5-2.8	5	0.3	13	5.1	16	0.01	0.6	4.4	3.5	4.9
BH12	0-0.15	4	<0.3	12	17	19	0.02	4.9	26	8.4	7
BH12	1.5-1.8	6	0.3	12	16	21	0.02	2.2	21	-	-
BH13	0-0.15	6	0.5	16	20	24	0.02	7.5	32	10	7.9
BH13	1.5-1.8	6	0.4	13	6.8	20	0.01	1.4	8.8	8.1	7.2
BH14	0-0.15	4	0.3	14	16	20	0.11	6.3	36	-	-
BH14	2.0-2.1	<3	<0.3	19	4	7	0.03	2.1	100	-	-
BH15	0-0.15	6	0.4	13	21	28	0.01	5.5	36	-	-
BH15	0.5-0.8	5	0.4	14	21	29	0.02	6.4	32	12	7.1
BH16	0.5-0.8	5	0.3	16	19	19	0.02	5.5	22	-	-
BH16	1.5-1.8	<3	<0.3	32	21	19	0.03	2.4	34	2.6	9
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	0.05	0.5	0.5	0.02	-
NATIONAL ENVIRONMEN MEASURE (2013)	IT PROTECTION AMENDMENT										
Health-based Investigation	Levels (HIL) ^a B - Residential B	500 e	150	500 ^c	30000	1200	30 ^d	1200	60000		
Ecological Investigation Le	vels (EIL) ^b -Urban residential	100	-	400	95	_g 1100	-	10	160		
GUIDELINES FOR THE NSW SITE AUDITOR SCHEME (2006)											
Provisional Phytotoxity-Ba	sed Investigation Levels (PIL)		3				1				

Notes: a: Residential with minimal opportunities for soil access; includes dw ellings with fully and permanently paved yard space such as high-rise buildings and apartments.

b: ElL of aged chromium(III), nickel & zinc w ere derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb w ith low traffic volume; the low est CEC=2.6 cmolc/kg & pH=4.9; the assumed clay content=10 % w ere selected for derivation of ElL; a conservative approach.

ElL of aged copper was calculated based on the pH and the CEC of the sample analysed and the low est value of the ACL was adopted.

c: Chromium (VI)

d: Methyl Mercury

e: Generic ElL for aged arsenic

f: Chromium (III)

g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.

TABLE D2 METALS, CATION EXCHANGE CAPACITY (CEC) & pH TEST RESULTS DISCRETE SAMPLE (Ref No: 13188/4-AA)

r	(1 NO. 1									_
			METALS (mg/kg)								
Sample Location	Depth (m)	ARSENIC	CADMIUM	CHROMIUM (Total)	COPPER	LEAD	MERCURY	NICKEL	ZINC	CEC (cmq/kg)	Hq
BH11	0-0.15	<3	0.4	37	29	10	0.01	36	49	14	9.1
Limits of Reporting (LOR)		3	0.3	0.5	0.5	1	0.05	0.5	0.5	0.02	-
NATIONAL ENVIRONMEN MEASURE (2013)	T PROTECTION AMENDMENT										
Health-based Investigation	Levels (HIL) ^a B - Residential B	500 e	150	500 ^c	30000	1200 g	30 ^d	1200	60000		
Ecological Investigation Levels (EIL) ^b Urban residential		100	-	410	190	1100	-	210	600		
GUIDELINES FOR THE NSW SITE AUDITOR SCHEME (2006)											
Provisional Phytotoxity-Bas	sed Investigation Levels (PIL)		3				1				

Notes: a: Residential with minimal opportunities for soil access; includes dw ellings with fully and permanently paved yard space such as high-rise buildings and apartments.

- b: EIL of aged chromium(III), nickel & zinc w ere derived from calculation spreadsheet developed by CSIRO for NEPC; old NSW suburb with low traffic volume; CEC=14 cmolc/kg & pH=9.1; the assumed clay content=10 % w ere selected for derivation of EIL; a conservative approach.
 - ElL of aged copper was calculated based on the pH and the CEC of the sample analysed and the low er value of the two ACL was adopted.
- c: Chromium (VI)
- d: Methyl Mercury
- e: Generic ElL for aged arsenic
- f: Chromium (III)
- g: Generic added contaminant limit for aged lead + ambient background concentration; old NSW suburb with low traffic volume.

TABLE E TOTAL RECOVERABLE HYDROCARBONS (TRH) AND BTEX TEST RESULTS DISCRETE SAMPLES (Ref No: 13188/4-AA)

											1				0100	170	<u> </u>																
																NATI	ONAL	ENV	RON	IENT	PROT	ECTI	ION A	MEN	IDM EN	ТМЕ	ASU	RE (20)13)				
				TR	RH (mg/	'ka)			BTEX	(mg/kg))	Hea	th Scr High (•	els (H dentia	'	E	cologi		creeni graine pan re	ed soi	I	for fir	16-	Eco	logica	1	eening graine ban re	ed so	il	or coa	arse-
Sample Location	Depth (m)	Soil type	F1	F2*	F2**	E3	F4	BENZENE	TOLUENE		XYLENES	F1	F2*	BENZENE	TOLUENE	ETHYLBENZENE	XYLENES	F1	F2**	F3	F4	BENZENE	TOLUENE	ETHYLBENZENE	XYLENES	F1	F2**	F3	F4	BENZENE	TOLUENE	ETHYLBENZENE	XYLENES
BH11	0-0.15	sand	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	45	110	0.5	160	55	40	-	-	-	-	-	-	-	-	180	120	300	2800	50	85	70	105
BH11	2.5-2.8	sand	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	110	440	0.5	310	NL	95	-	-	-	-	-	-	-	-	180	120	300	2800	50	85	70	105
BH12	0-0.15	sand	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	45	110	0.5	160	55	40	-	-	-	-	-	-	-	-	180	120	300	2800	50	85	70	105
BH12	1.5-1.8	sand	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	70	240	0.5	220	NL	60	-	-	-	-	-	-	-	-	180	120	300	2800	50	85	70	105
BH13	0-0.15	sand	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	45	110	0.5	160	55	40	-	-	-	-	-	-	-	-	180	120	300	2800) 50	85	70	105
BH13	1.5-1.8	sand	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	70	240	0.5	220	NL	60	-	-	-	-	-	-	-	-	180	120	300	2800) 50	85	70	105
BH14	0-0.15	sand	<25	<25	<25	<90	<120	-	<0.1	<0.1	<0.3	45	110	0.5	160	55	40	-	-	-	-	-	-	-	-	180	120	300	2800) 50	85	70	105
BH15	0-0.15	sand	<25	<25	<25	<90	<120		<0.1	<0.1	<0.3		110	0.5	160	55	40	-	-	-	-	-	-	-	-		120		2800		85	70	105
BH15	0.5-0.8	sand	<25	<25	<25	<90			<0.1		<0.3		110	0.5	160	55	40	-	-	-	-	-	-	-	-		120		2800			70	105
BH16	0.5-0.8	sand	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3		110	0.5	160	55	40	-	-	-	-	-	-	-	-		120		2800			70	105
BH16	1.5-1.8	sand	<25	<25	<25	<90	<120	<0.1	<0.1	<0.1	<0.3	70	240	0.5	220	NL	60	-	-	-	-	-	-	-	-	180	120	300	2800) 50	85	70	105
Limits of F	Reporting	(LOR)	25	25	25	90	120	0.1	0.1	0.1	0.3																						
Notoe ·		C6_C10 locs	DTEV																														

Notes: F1: C6-C10 less BTEX

F2*: >C10-C16 less Naphthalene

F2**: >C10-C16

F3: >C16-C34

F4: >C34-C40

NL: Not Limiting

TABLE F POLYCYCLIC AROMATIC HYDROCARBONS (PAH) TEST RESULTS DISCRETE SAMPLES (Ref No: 13188/4-AA)

				NATIONAL E	WIRONMENT PROTECTION	ON AMENDMENT MEASUR	E(2013)
				I Investigation	Health Screening Level	Generic Ecological	Ecological Screening
	PAH	(mg/kg)	Levels	(HIL) B ^a	(HSL) B - High density	Investigation Level (EIL) -	Level (ESL) - Urban
			Reside	ential B	residential	Urban residential	residential
Sample Depth Location (m) Soil type	BaP TEQ TOTAL PAHs	NAPHTHALENE BENZO(a)PYRENE (BaP)	BaP TEQ	TOTAL PAHs	NAPHTHALENE	NAPHTHALENE	BENZO(a)PYRENE (BaP)
BH11 0-0.15 sand	<0.3 1	<0.1 <0.1	4	400	3	170	0.7
BH11 2.5-2.8 sand	<0.3 <0.	8 <0.1 <0.1	4	400	NL	170	0.7
BH12 0-0.15 sand	<0.3 <0.	8 <0.1 <0.1	4	400	3	170	0.7
BH12 1.5-1.8 sand	<0.3 <0	8 <0.1 <0.1	4	400	NL	170	0.7
BH13 0-0.15 sand	<0.3 1	<0.1 <0.1	4	400	3	170	0.7
BH13 1.5-1.8 sand	<0.3 <0	8 <0.1 <0.1	4	400	NL	170	0.7
BH14 0-0.15 sand	<0.3 <0	8 <0.1 <0.1	4	400	3	170	0.7
BH15 0-0.15 sand	<0.3 <0.	8 <0.1 <0.1	4	400	3	170	0.7
BH15 0.5-0.8 sand	<0.3 <0.	8 <0.1 <0.1	4	400	3	170	0.7
BH16 0.5-0.8 sand	<0.3 <0.	8 <0.1 <0.1	4	400	3	170	0.7
BH16 1.5-1.8 sand	1.4 11	<0.1 1	4	400	NL	170	0.7
Limits of Reporting (LOR)	0.3 0.3	3 0.1 0.1					

Notes: a: Residential with minimal opportunities for soil access; includes dw ellings with fully and permanently paved yard space such as highrise buildings and apartments.

NL: Not Limimting

TABLE G ORGANOCHLORINE PESTICIDES (OCP), POLYCHLORINATED BIPHENYLS (PCB), CYANIDES & PHENOLS TEST DISCRETE SAMPLES (Ref No: 13188/4-AA)

		(1/6	1 140.	13188)) 4 -74	<u>~)</u>						-	1	
					(OCP (r	ng/kg)					(mg/kg)	(mg/kg)	(mg/kg)
Sample Location	Depth (m)	HEXACHLOROBENZENE (HCB)	HEPTACHLOR	ALDRIN+DIELDRIN	ENDRIN	METHOXYCHLOR	MIREX	ENDOSULFAN (alpha, beta & sulphate)	DDD+DDE+DDT	рот	CHLORDANE (alpha & gamma)	PCB	Cyanides	Phenols
BH11	0-0.15	<0.1	<0.1	<0.15	<0.2	<0.1	<0.1	<0.5	<0.6	<0.2	<0.2	<1	<0.5	<5
BH11	2.5-2.8	<0.1	<0.1	<0.15	<0.2	<0.1	<0.1	<0.5	<0.6	<0.2	<0.2	<1	-	-
BH12	0-0.15	<0.1	<0.1	<0.15	<0.2	<0.1	<0.1	<0.5	<0.6	<0.2	<0.2	<1	<0.5	<5
BH12	1.5-1.8	<0.1	<0.1	<0.15	<0.2	<0.1	<0.1	<0.5	<0.6	<0.2	<0.2	<1	-	-
BH13	0-0.15	<0.1	<0.1	<0.15	<0.2	<0.1	<0.1	<0.5	<0.6	<0.2	<0.2	<1	<0.5	<5
BH13	1.5-1.8	<0.1	<0.1	<0.15	<0.2	<0.1	<0.1	<0.5	<0.6	<0.2	<0.2	<1	-	-
BH14	0-0.15	<0.1	<0.1	<0.15	<0.2	<0.1	<0.1	<0.5	<0.6	<0.2	<0.2	<1	<0.5	<5
BH15	0-0.15	<0.1	<0.1	<0.15	<0.2	<0.1	<0.1	<0.5	<0.6	<0.2	<0.2	<1	<0.5	<5
BH15	0.5-0.8	<0.1	<0.1	<0.15	<0.2	<0.1	<0.1	<0.5	<0.6	<0.2	<0.2	<1	-	-
BH16	0.5-0.8	<0.1	<0.1	<0.15	<0.2	<0.1	<0.1	<0.5	<0.6	<0.2	<0.2	<1	<0.5	<5
BH16	1.5-1.8	<0.1	<0.1	<0.15	<0.2	<0.1	<0.1	<0.5	<0.6	<0.2	<0.2	<1	-	-
Limits of Reporting (LOR)			0.1	0.15	0.2	0.1	0.1	0.5	0.6	0.2	0.2	1	0.1	0.1
NATIONAL ENVIRONMENT PROTECTION AMENDMENT MEASURE (2013)														
Health-based Invest	15	10	10	20	500	20	400	600		90	1	300	45000	
Ecological Investigat	ion Levels (EIL) - Urban residential									180				

Notes: a: Residential with minimal opportunities for soil access; includes dw ellings with fully and permanently paved yard space such as high-rise buildings and apartments.

b: Generic EIL for DDT

TABLE H ASBESTOS TEST RESULTS DISCRETE SAMPLES (Ref No: 13188/4-AA)

Sample Location	Depth (m)	ASBESTOS
BH11	0-0.15	No Friable Asbestos exceeded the laboratory limit of reporting of 0.001%w/w
BH11	2.5-2.8	No Friable Asbestos exceeded the laboratory limit of reporting of 0.001%w/w
BH12	0-0.15	No Friable Asbestos exceeded the laboratory limit of reporting of 0.001% w/w
BH13	0-0.15	No Friable Asbestos exceeded the laboratory limit of reporting of 0.001%w/w
BH14	0-0.15	No Friable Asbestos exceeded the laboratory limit of reporting of 0.001%w/w
BH15	0-0.15	No Friable Asbestos exceeded the laboratory limit of reporting of 0.001% w/w
BH16	0.5-0.8	No Friable Asbestos exceeded the laboratory limit of reporting of 0.001% w/w

ATTACHMENT D

IMPORTANT INFORMATION REGARDING YOUR ENVIRONMENTAL SITE ASSESSMENT

These notes have been prepared by Geotechnique Pty Ltd, using guidelines prepared by the ASFE (Associated Soil and Foundation Engineers). The notes are offered to assist in the interpretation of your environmental site assessment report.

REASONS FOR AN ENVIRONMENTAL ASSESSMENT

Environmental site assessments are typically, though not exclusively, performed in the following circumstances:

- As a pre-acquisition assessment on behalf of a purchaser or a vendor, when a property is to be sold
- As a pre-development assessment, when a property or area of land is to be redeveloped, or the land use has changed, e.g. from a factory to a residential subdivision
- As a pre-development assessment of greenfield sites, to establish baseline conditions and assess environmental, geological and hydrological constraints to the development of e.g. a landfill
- As an audit of the environmental effects of previous and present site usage

Each circumstance requires a specific approach to assessment of soil and groundwater contamination. In all cases the objective is to identify and if possible quantify the risks that unrecognised contamination poses to the ongoing proposed activity. Such risks may be financial (clean-up costs or limitations in site use) and physical (health risks to site users or the public).

ENVIRONMENTAL SITE ASSESSMENT LIMITATIONS

Although information provided by an environmental site assessment can reduce exposure to the risk of the presence of contamination, no environmental site assessment can eliminate the risk. Even a rigorous professional assessment might not detect all contamination within a site. Contaminants could be present in areas that were not surveyed or sampled, or migrate to areas that did not show signs of contamination when sampled. Contaminant analysis cannot possibly cover every type of contaminant that may occur; only the most likely contaminants are screened.

AN ENVIRONMENTAL SITE ASSESSMENT REPORT IS BASED ON A UNIQUE SET OF PROJECT SPECIFIC FACTORS

In the following events and in order to avoid cost problems, you should ask your consultant to assess any changes in the conclusion and recommendations made in the assessment:

- When the nature of the proposed development is changed e.g. if a residential development is proposed, rather than a commercial development
- When the size or configuration of the proposed development is altered e.g. if a basement is added
- When the location or orientation of the proposed structure is modified
- When there is a change of land ownership, or
- For application to an adjacent site

ENVIRONMENTAL SITE ASSESSMENT FINDINGS ARE PROFESSIONAL ESTIMATES

Site assessment identifies actual sub-surface conditions only at those points where samples are taken, when they are taken. Data obtained from the sampling and subsequent laboratory analyses are interpreted by geologists, engineers or scientists and opinions are drawn about the overall sub-surface conditions, the nature and extent of contamination, the likely impact on any proposed development and appropriate remediation measures. Actual conditions may differ from those inferred, because no professional, no matter how qualified and no sub-surface exploration program, no matter how comprehensive, can reveal what is hidden by earth, rock and time. The actual interface between materials may be far more gradual or abrupt than an assessment indicates. Actual conditions in areas not sampled may differ from predictions. Nothing can be done to prevent the unanticipated, however, steps can be taken to help minimise the impact. For this reason site owners should retain the services of their consultants throughout the development stages of the project in order to identify variances, conduct additional tests that may be necessary and to recommend solutions to problems encountered on site.

Soil and groundwater contamination is a field in which legislation and interpretation of legislation by government departments is changing rapidly. Whilst every attempt is made by Geotechnique Pty Ltd to be familiar with current policy, our interpretation of the investigation findings should not be taken to be that of the relevant authority. When approval from a statutory authority is required for a project, approval should be directly sought.

Environmental Notes continued

STABILITY OF SUB-SURFACE CONDITIONS

Sub-surface conditions can change by natural processes and site activities. As an environmental site assessment is based on conditions existing at the time of the investigation, project decisions should not be based on environmental site assessment data that may have been affected by time. The consultant should be requested to advise if additional tests are required.

ENVIRONMENTAL SITE ASSESSMENTS ARE PERFORMED FOR SPECIFIC PURPOSES AND CLIENTS

Environmental site assessments are prepared in response to a specific scope of work required to meet the specific needs of specific individuals e.g. an assessment prepared for a consulting civil engineer may not be adequate to a construction contractor or another consulting civil engineer.

An assessment should not be used by other persons for any purpose or by the client for a different purpose. No individual, other than the client, should apply an assessment, even for its intended purpose, without first conferring with the consultant. No person should apply an assessment for any purpose other than that originally contemplated, without first conferring with the consultant.

MISINTERPRETATION OF ENVIRONMENTAL SITE ASSESSMENTS

Costly problems can occur when design professionals develop plans based on misinterpretation of an environmental site assessment. In order to minimise problems, the environmental consultant should be retained to work with appropriate design professionals, to explain relevant findings and to review the adequacy of plans and specifications relative to contamination issues.

LOGS SHOULD NOT BE SEPARATED FROM THE REPORT

Borehole and test pit logs are prepared by environmental scientists, engineers or geologists, based upon interpretation of field conditions and laboratory evaluation of field samples. Logs are normally provided in our reports and these would not be redrawn for inclusion in site remediation or other design drawings, as subtle but significant drafting errors or omissions may occur in the transfer process. Photographic reproduction can eliminate this problem, however, contractors can still misinterpret the logs during bid preparation if separated from the text of the assessment. Should this occur, delays and disputes, or unanticipated costs may result.

To reduce the likelihood of borehole and test pit log misinterpretation, the complete assessment should be available to persons or organisations involved in the project, such as contractors, for their use. Denial of such access and disclaiming responsibility for the accuracy of sub-surface information does not insulate an owner from the attendant liability. It is critical that the site owner provides all available site information to persons and organisations, such as contractors.

READ RESPONSIBILITY CLAUSES CLOSELY

An environmental site assessment is based extensively on judgement and opinion; therefore, it is necessarily less exact than other disciplines. This situation has resulted in wholly unwarranted claims being lodged against consultants. In order to aid in prevention of this problem, model clauses have been developed for use in written transmittals. These are definitive clauses, designed to indicate consultant responsibility. Their use helps all parties involved recognise individual responsibilities and formulate appropriate action. Some of these definitive clauses are likely to appear in the environmental site assessment and you are encouraged to read them closely. Your consultant will be happy to give full and frank answers to any questions you may have.

EOTECHNIQUE

PTY LTD